Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299782

RESUMO

The Internet of Things (IoT) uses wireless networks without infrastructure to install a huge number of wireless sensors that track system, physical, and environmental factors. There are a variety of WSN uses, and some well-known application factors include energy consumption and lifespan duration for routing purposes. The sensors have detecting, processing, and communication capabilities. In this paper, an intelligent healthcare system is proposed which consists of nano sensors that collect real-time health status and transfer it to the doctor's server. Time consumption and various attacks are major concerns, and some existing techniques contain stumbling blocks. Therefore, in this research, a genetic-based encryption method is advocated to protect data transmitted over a wireless channel using sensors to avoid an uncomfortable data transmission environment. An authentication procedure is also proposed for legitimate users to access the data channel. Results show that the proposed algorithm is lightweight and energy efficient, and time consumption is 90% lower with a higher security ratio.


Assuntos
Internet das Coisas , Segurança Computacional , Tecnologia sem Fio , Redes de Comunicação de Computadores , Atenção à Saúde
2.
J Healthc Eng ; 2023: 4301745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844950

RESUMO

The infectious coronavirus disease (COVID-19) has become a great threat to global human health. Timely and rapid detection of COVID-19 cases is very crucial to control its spreading through isolation measures as well as for proper treatment. Though the real-time reverse transcription-polymerase chain reaction (RT-PCR) test is a widely used technique for COVID-19 infection, recent researches suggest chest computed tomography (CT)-based screening as an effective substitute in cases of time and availability limitations of RT-PCR. In consequence, deep learning-based COVID-19 detection from chest CT images is gaining momentum. Furthermore, visual analysis of data has enhanced the opportunities of maximizing the prediction performance in this big data and deep learning realm. In this article, we have proposed two separate deformable deep networks converting from the conventional convolutional neural network (CNN) and the state-of-the-art ResNet-50, to detect COVID-19 cases from chest CT images. The impact of the deformable concept has been observed through performance comparative analysis among the designed deformable and normal models, and it is found that the deformable models show better prediction results than their normal form. Furthermore, the proposed deformable ResNet-50 model shows better performance than the proposed deformable CNN model. The gradient class activation mapping (Grad-CAM) technique has been used to visualize and check the targeted regions' localization effort at the final convolutional layer and has been found excellent. Total 2481 chest CT images have been used to evaluate the performance of the proposed models with a train-valid-test data splitting ratio of 80 : 10 : 10 in random fashion. The proposed deformable ResNet-50 model achieved training accuracy of 99.5% and test accuracy of 97.6% with specificity of 98.5% and sensitivity of 96.5% which are satisfactory compared with related works. The comprehensive discussion demonstrates that the proposed deformable ResNet-50 model-based COVID-19 detection technique can be useful for clinical applications.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Big Data , Movimento (Física) , Redes Neurais de Computação
3.
Healthcare (Basel) ; 11(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36611599

RESUMO

In recent years, the healthcare system, along with the technology that surrounds it, has become a sector in much need of development. It has already improved in a wide range of areas thanks to significant and continuous research into the practical implications of biomedical and telemedicine studies. To ensure the continuing technological improvement of hospitals, physicians now also must properly maintain and manage large volumes of patient data. Transferring large amounts of data such as images to IoT servers based on machine-to-machine communication is difficult and time consuming over MQTT and MLLP protocols, and since IoT brokers only handle a limited number of bytes of data, such protocols can only transfer patient information and other text data. It is more difficult to handle the monitoring of ultrasound, MRI, or CT image data via IoT. To address this problem, this study proposes a model in which the system displays images as well as patient data on an IoT dashboard. A Raspberry Pi processes HL7 messages received from medical devices like an ultrasound machine (ULSM) and extracts only the image data for transfer to an FTP server. The Raspberry Pi 3 (RSPI3) forwards the patient information along with a unique encrypted image data link from the FTP server to the IoT server. We have implemented an authentic and NS3-based simulation environment to monitor real-time ultrasound image data on the IoT server and have analyzed the system performance, which has been impressive. This method will enrich the telemedicine facilities both for patients and physicians by assisting with overall monitoring of data.

4.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015975

RESUMO

In the Internet of Things (IoT), the de facto Routing Protocol for Low Power and Lossy Networks (RPL) is susceptible to several disruptive attacks based on its functionalities and features. Among various RPL security solutions, a trust-based security is easy to adapt for resource-constrained IoT environments. In the existing trust-based security for RPL routing attacks, nodes' mobility is not considered or limited to only the sender nodes. Similarly, these trust-based protocols are not evaluated for mobile IoT environments, particularly regarding RPL attacks. Hence, a trust and mobility-based secure routing protocol is proposed, termed as SMTrust, by critically analysing the trust metrics involving the mobility-based metrics in IoT. SMTrust intends to provide security against RPL Rank and Blackhole attacks. The proposed protocol is evaluated in three different scenarios, including static and mobile nodes in an IoT network. SMTrust is compared with the default RPL objective function, Minimum Rank with Hysteresis Objective Function (MRHOF), SecTrust, DCTM, and MRTS. The evaluation results indicate that the proposed protocol outperforms with respect to packet loss rate, throughput, and topology stability. Moreover, SMTrust is validated using routing protocol requirements analysis to ensure that it fulfils the consistency, optimality, and loop-freeness.

5.
IEEE Trans Netw Sci Eng ; 9(1): 308-318, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35582325

RESUMO

Network and cloud service providers are facing an unprecedented challenge to meet the demand of end-users during the COVID-19 pandemic. Currently, billions of people around the world are ordered to stay at home and use remote connection technologies to prevent the spread of the disease. The COVID-19 crisis brought a new reality to network service providers that will eventually accelerate the deployment of edge computing resources to attract the massive influx of users' traffic. The user can elect to procure its resource needs from any edge computing provider based on a variety of attributes such as price and quality. The main challenge for the user is how to choose between the price and multiple quality of service deals when such offerings are changing continually. This problem falls under multi-attribute decision-making. This paper investigates and proposes a novel auction mechanism by which network service brokers would be able to automate the selection of edge computing offers to support their end-users. We also propose a multi-attribute decision-making model that allows the broker to maximize its utility when several bids from edge-network providers are present. The evaluation and experimentation show the practicality and robustness of the proposed model.

6.
IEEE Trans Inf Technol Biomed ; 16(6): 1058-69, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24218700

RESUMO

Throughout various complex processes within hospitals, context-aware services and applications can help to improve the quality of care and reduce costs. For example, sensors and radio frequency identification (RFID) technologies for e-health have been deployed to improve the flow of material, equipment, personal, and patient. Bed tracking, patient monitoring, real-time logistic analysis, and critical equipment tracking are famous applications of real-time location systems (RTLS) in hospitals. In fact, existing case studies show that RTLS can improve service quality and safety, and optimize emergency management and time critical processes. In this paper, we propose a robust system for position and orientation determination of equipment. Our system utilizes passive (RFID) technology mounted on flooring plates and several peripherals for sensor data interpretation. The system is implemented and tested through extensive experiments. The results show that our system's average positioning and orientation measurement outperforms existing systems in terms of accuracy. The details of the system as well as the experimental results are presented in this paper.


Assuntos
Equipamentos e Provisões Hospitalares , Administração de Materiais no Hospital/métodos , Informática Médica , Dispositivo de Identificação por Radiofrequência , Alarmes Clínicos , Desenho de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...